1,899 research outputs found

    Direct measurement of swimming and diving kinematics of giant Atlantic bluefin tuna (Thunnus thynnus)

    Get PDF
    Tunas possess a range of physiological and mechanical adaptations geared towards high-performance swimming that are of considerable interest to physiologists, ecologists and engineers. Advances in biologging have provided significant improvements in understanding tuna migrations and vertical movement patterns, yet our understanding of the locomotion and swimming mechanics of these fish under natural conditions is limited. We equipped Atlantic bluefin tuna (Thunnus thynnus) with motion-sensitive tags and video cameras to quantify the gaits and kinematics used by wild fish. Our data reveal significant variety in the locomotory kinematics of Atlantic bluefin tuna, ranging from continuous locomotion to two types of intermittent locomotion. The tuna sustained swimming speeds in excess of 1.5 m s−1 (0.6 body lengths s−1), while beating their tail at a frequency of approximately 1 Hz. While diving, some descents were entirely composed of passive glides, with slower descent rates featuring more gliding, while ascents were primarily composed of active swimming. The observed swimming behaviour of Atlantic bluefin tuna is consistent with theoretical models predicting such intermittent locomotion to result in mechanical and physiological advantages. Our results confirm that Atlantic bluefin tuna possess behavioural specializations to increase their locomotory performance, which together with their unique physiology improve their capacity to use pelagic and mesopelagic habitats

    Conformal Field Theory Approach to the 2-Impurity Kondo Problem: Comparison with Numerical Renormalization Group Results

    Full text link
    Numerical renormalization group and conformal field theory work indicate that the two impurity Kondo Hamiltonian has a non-Fermi liquid critical point separating the Kondo-screening phase from the inter-impurity singlet phase when particle-hole (P-H) symmetry is maintained. We clarify the circumstances under which this critical point occurs, pointing out that there are two types of P-H symmetry. Only one of them guarantees the occurance of the critical point. Much of the previous numerical work was done on models with the other type of P-H symmetry. We analyse this critical point using the boundary conformal field theory technique. The finite-size spectrum is presented in detail and compared with about 50 energy levels obtained using the numerical renormalization group. Various Green's functions, general renormalization group behaviour, and a hidden SO(7)SO(7) are analysed.Comment: 38 pages, RevTex. 2 new sections clarify the circumstances under which a model will exhibit the non-trivial critical point (hence potentially resolving disagreements with other Authors) and explain the hidden SO(7) symmetry of the model, relating it to an alternative approach of Sire et al. and Ga

    N identical particles under quantum confinement: A many-body dimensional perturbation theory approach

    Full text link
    Systems that involve N identical interacting particles under quantum confinement appear throughout many areas of physics, including chemical, condensed matter, and atomic physics. In this paper, we present the methods of dimensional perturbation theory, a powerful set of tools that uses symmetry to yield simple results for studying such many-body systems. We present a detailed discussion of the dimensional continuation of the N-particle Schrodinger equation, the spatial dimension D -> infinity equilibrium (D^0) structure, and the normal-mode (D^{-1}) structure. We use the FG matrix method to derive general, analytical expressions for the many-body normal-mode vibrational frequencies, and we give specific analytical results for three confined N-body quantum systems: the N-electron atom, N-electron quantum dot, and N-atom inhomogeneous Bose-Einstein condensate with a repulsive hardcore potential

    Coordinate Representation of the One-Spinon One-Holon Wavefunction and Spinon-Holon Interaction

    Full text link
    By deriving and studying the coordinate representation for the one-spinon one-holon wavefunction we show that spinons and holons in the supersymmetric tJt - J model with 1/r21/r^2 interaction attract each other. The interaction causes a probability enhancement in the one-spinon one-holon wavefunction at short separation between the particles. We express the hole spectral function for a finite lattice in terms of the probability enhancement, given by the one-spinon one-holon wavefunction at zero separation. In the thermodynamic limit, the spinon-holon attraction turns into the square-root divergence in the hole spectral function.Comment: 20 pages, 3 .eps figure

    A framework to predict, validate and review the acoustic footprints of operating tidal turbines [abstract]

    Get PDF
    A framework to predict, validate and review the acoustic footprints of operating tidal turbines [abstract

    Neuropsychological consequences of Covid-19

    Get PDF
    No abstract available

    Generalized Drinfeld-Sokolov Reductions and KdV Type Hierarchies

    Get PDF
    Generalized Drinfeld-Sokolov (DS) hierarchies are constructed through local reductions of Hamiltonian flows generated by monodromy invariants on the dual of a loop algebra. Following earlier work of De Groot et al, reductions based upon graded regular elements of arbitrary Heisenberg subalgebras are considered. We show that, in the case of the nontwisted loop algebra (gln)\ell(gl_n), graded regular elements exist only in those Heisenberg subalgebras which correspond either to the partitions of nn into the sum of equal numbers n=prn=pr or to equal numbers plus one n=pr+1n=pr+1. We prove that the reduction belonging to the grade 11 regular elements in the case n=prn=pr yields the p×pp\times p matrix version of the Gelfand-Dickey rr-KdV hierarchy, generalizing the scalar case p=1p=1 considered by DS. The methods of DS are utilized throughout the analysis, but formulating the reduction entirely within the Hamiltonian framework provided by the classical r-matrix approach leads to some simplifications even for p=1p=1.Comment: 43 page

    Personality Traits in Juvenile Delinquents: Associations with Peer and Family Relations

    Get PDF
    Objective: To establish family and peer correlates of personality traits shown to be predictive of future criminal recidivism. Method: 137 incarcerated boys aged 13-18 (x = 16 ± 1.2), 35% black, 21% Hispanic, 43% white, and 1% other completed the Weinberger Adjustment Inventory (WAI) and a psychosocial history obtained by a social worker. Records were summarized using two raters who assigned numerical ratings to dimensions of family and peer relations. Results: As expected, observer ratings of family and peer relationships were correlated with the personality characteristics of distress, denial and restraint as measured by the WAI. Conclusion: Family and peer relations are associated with certain personality traits that are predictive of criminal recidivism in delinquents. This study further expands the knowledge base regarding the social and interpersonal correlates of individual traits predicting criminal recidivism

    Niobium based intermetallics as a source of high-current/high-magnetic field superconductors

    Full text link
    The article is focused on low temperature intermetallic A15 superconducting wires development for Nuclear Magnetic Resonance, NMR, and Nuclear Magnetic Imaging, MRI, magnets and also on cryogen-free magnets. There are many other applications which would benefit from new development such as future Large Hadron Collider to be built from A15 intermetallic conductors. This paper highlights the current status of development of the niobium based intermetallics with special attention to Nb 3 (Al 1-x, Ge x). Discussion is focused on the materials science aspects of conductor manufacture, such as b-phase (A15) formation, with particular emphasis on the maximisation of the superconducting parameters, such as critical current density, Jc, critical temperature, Tc, and upper critical field, Hc2 . Many successful manufacturing techniques of the potential niobium-aluminide intermetallic superconducting conductors, such as solid-state processing, liquid-solid processing, rapid heating/cooling processes, are described, compared and assessed. Special emphasis has been laid on conditions under which the Jc (B) peak effect occurs in some of the Nb3(Al,Ge) wires. A novel electrodeoxidizing method developed in Cambridge whereby the alloys and intermetallics are produced cheaply making all superconducting electromagnetic devices, using low cost LTCs, more cost effective is presented.This new technique has potential to revolutionise the existing superconducting industry enabling reduction of cost orders of magnitude.Comment: Paper presented at EUCAS'01 conference, Copenhagen, 26-30 August 200

    Generalized Drinfeld-Sokolov Hierarchies II: The Hamiltonian Structures

    Full text link
    In this paper we examine the bi-Hamiltonian structure of the generalized KdV-hierarchies. We verify that both Hamiltonian structures take the form of Kirillov brackets on the Kac-Moody algebra, and that they define a coordinated system. Classical extended conformal algebras are obtained from the second Poisson bracket. In particular, we construct the WnlW_n^l algebras, first discussed for the case n=3n=3 and l=2l=2 by A. Polyakov and M. Bershadsky.Comment: 41 page
    corecore